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Abstract

A comprehensive treatment of the thermodynamics of cyclic magnetic refrigeration processes is presented. It starts with a

review of the work, heat and internal energy of a magnetized specimen in a magnetic field, and a list of the thermodynamic

potentials is given. These are based on the very recent discovery of an alternative Kelvin force. It is shown that this force is

compatible with the internal energy proposed by Landau and Lifshitz. New formulas for the specific enthalpies are presented.

Cyclic processes are discussed in detail, e.g. the Brayton, Ericsson and Carnot cycles. Magnetic refrigeration and magnetic heat

pump cycles are preferably designed by applying the cascade or/and regeneration principle. Cascade systems allow wider

temperature ranges to be obtained. The main objective of this article is to yield a theoretical basis for an optimal design of new

magnetic refrigeration and heat pump devices.
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1. Introduction

Magnetic refrigeration is a technology which applies

the magnetocaloric effect (MCE), akin to gas refrigeration

being based on the compressibility of a refrigerant. The

MCE was first discovered by Warburg [1], who observed

an increase in temperature when he brought an iron

sample into a magnetic field and a decrease when the

sample was removed from it. Soon after this discovery

Edison and Tesla (Rosensweig [2]) independently and
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unsuccessfully tried to benefit from this effect by running

heat engines for power production. In 1918 Weiss and

Piccard [3] explained the magnetocaloric effect. Later

Debye [4] and Giauque [5] proposed a method of

magnetic refrigeration for low-temperature physics in

order to obtain sub-Kelvin temperatures. In 1933 Giauque

and MacDougall [6] successfully verified the method by

experiment. Since the 1930s magnetic refrigeration has

been a standard technique in low-temperature physics. It

has proved useful to cool down from a few Kelvin to some

hundredths, or in very skilful applications to a few

thousandths of a Kelvin. In 1976 Brown (Refs. [7,8])

constructed the first magnetic refrigerator to work at

room temperature. Subsequently a number of patents

describing such refrigerators were registered. The first
International Journal of Refrigeration 29 (2006) 3–21
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Nomenclature

A area (m2)
ðA vector potential (T m)

B magnetic induction (TZN AK1mK1)

c speed of light (m sK1)

c specific heat capacity (J mK3 K)
ðD dielectric field (A mK1)
ðE electric field (TZN AK1mK1)

f specific Helmholtz energy (J mK3)

g specific Gibbs energy (J mK3)

h specific enthalpy (J mK3)
ðH magnetic field (A mK1)

j electrical intensity (A mK2)
ðM magnetization (vector) (A mK1)

N demagnetization factor (–)
ðM magnetic moment (A m2)

p pressure (Pa)

q specific heat (J mK3)

Q heat (J)

S entropy (J KK1)

S surface (m2)

s specific entropy (J mK3 KK1)

s displacement (m)

t time (s)

T temperature (K)

U internal energy (J)

u specific internal energy (J mK3)

V volume (m3)

w specific work (J mK3)

W work (J)

T temperature (K)

Greek symbols

c 0 (derivative) susceptibility (–)

f potential (A2 mK2)

F potential (A2 m)

G domain of specimen (–)

m0 permeability of vacuum (T m AK1ZN AK2)

m relative permeability (–)

r density (kg mK3)

U total domain (–)

J potential (T2)

Subscripts, superscripts

0 free magnetic field

1 normalized

abs absolute

ad adiabatic

c cooling

dem demagnetization

e electronic

int internal

l lattice

m magnetic

r rejected

tech technical
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‘room temperature’ magnetic refrigerator—containing

permanent magnets—was designed and built in 2001 by

the Astronautics Cooperation in the USA [9]. A review of

such magnetic refrigerators can be found in Refs. [10–12].

Magnetic refrigeration and heat pump technology is

considered to be a green technology with the potential

to replace conventional vapour compression systems,

which at present mainly work with HCFC and CFC

refrigerants.

At the end of this article, it will become clear that

ferrohydrodynamics (FHD) will play a crucial role in the

field of magnetic refrigeration. Research in FHD began in

the mid-1960s with the objective of converting heat into

work in systems with no moving parts [2]. In 1964 Resler

and Rosensweig (Refs. [13,14]) had the idea that magnetic

conversion of heat into work (or the reverse process for

refrigeration) could be efficiently performed at room

temperature or even above by regeneration of heat in the

cycle. The first machines based on this idea, which moved

magnetocaloric alloys through magnetic fields, were

developed. Higher heat transfer from the fluid to the metal

and vice versa is obtained by rotating porous structures

across magnetic field lines (Kitanovski et al. [15]). Another
principle is the creation of suspensions with solid magneto-

caloric particles, which are forced to flow through magnetic

fields [16]. New developments of fluids, with a characteristic

particle size of two orders above the nanoscale, may lead to

future improvements in such magnetic refrigeration and heat

pump devices. The systems recently proposed are ideal for

applications involving an operation in a cascade configur-

ation or/and making use of regeneration.

Research on magneto caloric materials—suitable for

magnetic refrigeration near room temperature—

increased greatly in the 1980s. The number of reviewed

articles shows exponential growth after the invention of

alloys based on gadolinium (Gd) at the AMES Labora-

tory ([17–19]). Since then discoveries of numerous magneto-

caloric compounds have been published, based for example

on manganese (Mn) (Refs. [20–22]). A review of various

magnetocaloric materials can be found in Refs. [23–25].

The development of these materials is still undergoing

substantial improvement, which makes the magnetic heating

and cooling technology increasingly interesting, including

for practical large-scale applications, such as in home

refrigerators, heat pump applications, air conditioning

systems, process technical systems, automobiles, etc.



Fig. 1. An electrically induced or permanent magnet (a) without and (b) with a specimen with magnetization M in its gap. The gap field H0 is

assumed to be homogeneous. Because of a demagnetization field in the specimen, Hdem, the field there is only Hint.
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2. Internal energy, heat and work in a magnetic material

The thermodynamics of magnetic refrigeration is

introduced by the first law of thermodynamics1:

dU Z dQ CdW (1)

where dU is the infinitesimal change of the internal energy.

dQ is a small amount of heat added to or removed from the

considered system (e.g. Fig. 1), or created by a magnetic

internal source (magnetocaloric effect). dW denotes the

differential of the work performed on the system, or

extracted from it. Magnetic refrigerants are usually alloys,

and the conditions:

p Z const (2a)

V Z const (2b)

therefore hold very well, and these quantities do not appear

in the thermodynamic potentials in this article. To determine

the work in the magnetic material, the four Maxwell

equations are considered:

rot ðE C
1

c

v ðB

vt
Z 0 (3a)

div ðB Z 0 (3b)

rot ðH K
1

c

v ðD

vt
K j Z 0 (3c)

div ðD Kr Z 0 (3d)

To obtain the specific (volumetric) energy equation, Eq.

(3a) is multiplied by ðH and Eq. (3c) by ðE , and the second
1 This equation is thermodynamically very useful but mathemat-

ically a little problematic, because dQ and dW are neither one forms

nor total differentials.
equation is then subtracted from the first to derive the

following result:

cð ðH rot ðE K ðErot ðH ÞC ðH
v ðB

vt
C ðE

v ðD

vt

 !
Cc ðE$ðj Z 0 (4)

The two terms in the first bracket on the left describe

radiation of electromagnetic energy and are of no

importance here. The third and fourth terms in the second

bracket describe the work per unit of time performed on

elementary magnetic moments (ordering of spins) and on

charged particles. The charged particles and the electric

current are also irrelevant for most of the following

considerations. It then follows that (a more detailed

derivation is found in Landau and Lifshitz, [26]):

dw ZKðHd ðB (5)

Reversibly performed or extracted work leads to this

alteration of the specific energy of the magnetic system

(specimen and surrounding magnetic field to infinity). The

induction ðB is a combination of stress ðH and order

parameter ðM and defined by:

ðB Z m0ð ðH C ðMÞ (6)

with the magnetic permeability m0 of the vacuum. This

equation is inserted into (5) to become:

dw ZKm0
ðHd ðM K

m0

2
dð ðH

2
Þ (7)

In Eq. (7) the first term describes the specific energy in

the specimen and the second, which can be written by

introducing a potential:

f Z
1

2
ðH

2
(8)

denotes the specific energy in the magnetic field. ðH defines a

conservative field with the potential f. It then follows that:
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dw ZKm0
ðHd ðM Km0df (9)

At this stage the last term is often neglected with the

argument that it does not apply in cyclic processes. In

the remainder another normalization is applied. For the

differential of the work in a spatial domain U we obtain:

dW ZKm0

ð
U

ðHd ðMdV Km0dF (10a)

dF Z

ð
U

dfdV (10b)

Only if ðH is constant in the entire specimen does it

follow from Eq. (10a) that:

dW ZKm0
ðHd ðM Km0dF (S-11a)

ðM Z

ð
G

ðMdV (S-11b)

This now defines the magnetic moment of the specimen.

If a result denotes a special case, the equation number is

always preceded by the additional letter S. The vector ðH is

an intensive variable and ðM is an extensive variable. For a

thermodynamic treatment it is useful to redefine the internal

energy u by extracting the field energy, which is contained

in the magnetic field without a specimen2:

dW1 Z dW KdW0 ZK

ð
U

ðHd ðBdV C

ð
U

ðH0d ðB0dV (12)

Note that this is a different normalization process than

neglecting the potential in Eq. (10a). From Eq. (6) it is

concluded that:

ðB0 Z m0
ðH 0 (13)

In the following extension, in the last term Eq. (13) is

applied:

ðHd ðB K ðH0d ðB0

Z ð ðH K ðH 0Þd ðB C ðH0ðd ðB Km0d ðH Þ

Cm0
ðH 0ðd ðH Kd ðH 0Þ (14)

Substituting Eq. (14) into Eq. (12), we obtain:

dW1 ZK

ð
U

ð ðH K ðH0Þd ðBdV K

ð
U

ðH0dð ðB Km0
ðH ÞdV

Km0

ð
U

ðH 0dð ðH K ðH 0ÞdV (15)

A treatment applying vector analysis leads to the
2 H0 is an adjusted external parameter (e.g. a homogeneous field

in the gap of an electric magnet created by electric currents).
following result (Appendix A):

dw1 ZKðB0

1

m0

d ðB Kd ðH

� �
(16)

From Eqs. (6) and (13) we conclude that:

dw1 Z dwðextÞ
1 ZKm0

ðH0d ðM (17)

In an application of this relation, the integration takes

place only over the domain G of the magnetic specimen.

Recently, the Kelvin force, which is the force on a magnetic

material in a magnetic field, was critically discussed and an

alternative version was proposed [27,28]. This force is also

the force which has to be overcome to move a magneto-

caloric sample out of a magnetic field and to decrease a

magnetization. In Appendix B it is shown that the recently

discovered Kelvin force leads to the specific internal energy

given by Eq. (17). In Ref. [29] this potential is also found to

be accurate. It is stated that this is the specific energy related

to the specimen only and not including magnetic field

energies.

Appendix D/Table A1 and Fig. 2 show an overview of

different kinds of work contributions, which occur in

magnetic refrigeration by analogy to conventional vapour

compression processes. In a vapour compression system the

work performed by an external forcing, e.g. a quasi-static

reversible movement of a piston, is dW ðextÞ
1 Z ðF$dðsZ

pAdsZKpdV (Fig. 2(a)). The analogue work in magnetic

refrigeration is given by a forcing of the external magnetic

field, which magnetizes the specimen (compare with

Fig. 2(b) and Eq. (17)). These two cases correspond to

closed systems. The work performed in an open (adiabatic)

system, with a fluid transported in and out of the control

volume, leads to an alteration of the energy density from

p(1)v(1) to p(2)v(2) (Fig. 2(c)). Here the alteration between the

two states in the direction of flow is:

DwðabsÞ
1 ZKDðpvÞZKðpð2Þvð2ÞKpð1Þvð1ÞÞ, or for an infinite-

simally small section: dwðabsÞ
1 ZKdðpvÞ. The net work of a

machine, operating in a steady-state process, also known as

shaft or more frequently as technical work is then:

dwðtechÞ
1 ZKðdwðabsÞ

1 KdwðextÞ
1 Þ. It therefore, follows that:

dwðtechÞ
1 ZdðpvÞKpdvZvdp. This work is available, e.g. at

the shaft of a turbine. By analogy it follows for a magnetic

refrigeration system that:

dwðabsÞ
1 ZKm0dð ðH 0

ðMÞ0dwðtechÞ
1

ZKðdwðabsÞ
1 KdwðextÞ

1 Þ Z m0
ðMd ðH0 (18)

Eq. (18) defines the technical work which has to be

performed, e.g. at the shaft of a magnetic refrigerator wheel

to drive the magnetic refrigeration process (Fig. 2(d)).

Analogous considerations are also valid for the heat,

temperature and specific entropy.

We now consider the total differential of the redefined

internal energy u1(s,M):
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du1 Z dq Cdw1 Z
vu1

vs

� �
M

ds C ðVMu1d ðM

Z
vu1

vs

� �
M

ds C
vu1

vM

� �
s

dM (19a)

ðVM Z
v

vM1

;
v

vM2

;
v

vM3

� �
(19b)

d ðM Z ðdM1; dM2; dM3Þ (19c)

where, for simplification, the vectorial notation in (19a) was

neglected. Because the volume is also constant, it is written:

vu1

vs

� �
M

Z
vu

vs

� �
M;V

Z
vu1

vs

� �
V

Z T (20)
Fig. 2. Analogies of adiabatic processes in conventional systems (a) and (b)

(a) and (b) occur in closed systems. The first (a) shows a piston compressing

a magnetic force field. Cases (c) and (d) show an open system each with a fl

In figure (c) only a section of a turbine wheel is shown. The last figure (

double-cylindrical rotary wheel machine. A magnetocaloric alloy flows o
It is known from the conventional thermodynamics of

gas compression (e.g. Ref. [26]) that the derivative of the

internal energy in terms of the entropy is identical to the

temperature, and this is therefore not proven here.

Comparing Eqs. (19) and taking (20) into consideration, it

follows that:

dq Z Tds (21)

a well-known relation for reversible processes. Now, by

comparing again Eq. (19), but this time taking (17) into

consideration, the differential of the external work is:

dw1 Z ðVMu1d ðM ZKm0
ðH 0d ðM (22)

By inserting Eqs. (21) and (22) into Eq. (19a), it follows

for the specific internal energy:
with magnetic refrigeration processes (c) and (d). The two processes

a gas, and the second a magnetocaloric sample (e.g. a pendulum) in

ux of refrigerant (gas or magnetocaloric material) over the boundary.

d), in analogy to (c), presents an equal section of a magnetocaloric

ver the fixed boundaries in the direction of the black arrows.
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du1 Z Tds Km0
ðH0d ðM (23)
3. Thermodynamic potentials and Maxwell relations

3.1. Brief introduction

The starting point for the study in this chapter is the

redefined internal energy, which is presented by Eq. (23). By

applying Legendre transformations [30], the thermodynamic

potentials which are presented in the following subchapters

are obtained.

3.2. Specific enthalpy

The specific enthalpy is the potential to describe the

behaviour of an open system with work performed over its

boundary:

h1 Z u1 Cm0H0M (24)

where again for simplicity the vectorial denotation has been

substituted by the one-dimensional equivalent. The deriva-

tive of this potential is:

dh1 Z du1 Cm0H0dM Cm0MdH0 (25)

Inserting (23) it follows that:

dh1ðs;H0Þ Z
vh1

vs

� �
H0

ds C
vh1

vH0

� �
s

dH0

Z Tds Cm0MdH0 (26)

The derivatives are:

vh1

vs

� �
H0

Z T (27a)

vh1

vH0

� �
s

Z m0M (27b)

The Maxwell relation is given by the cross-relation:

v

vH0

vh1

vs

� �
H0

� �
s

Z
v

vs

vh1

vH0

� �
s

� �
H0

(28)

By inserting the results of (27a) and (27b), we obtain:

vT

vH0

� �
s

Z m0

vM

vs

� �
H0

(29)
3.3. Specific Helmholtz energy

The specific free energy or Helmholtz energy is accurate

in describing an open system with a flux of heat over its

boundary:

f1 Z u1 KTs (30)

Differentiation and inserting (23) leads to:
df1ðT ;MÞ ZKsdT Km0H0dM (31)

It then follows that:

vf1
vT

� �
M

ZKs (32a)

and

vf1
vM

� �
T

ZKm0H0 (32b)

By analogy to Eq. (28) in Section 3.1, applying Eqs.

(32a) and (32b), the following Maxwell relation is

determined:

v

vM

vf1
vT

� �
M

� �
T

Z
v

vT

vf1
vM

� �
T

� �
M

0
vs

vM

� �
T

Z m0

vH0

vT

� �
M

(33)

3.4. Specific Gibbs energy

The specific Gibbs energy is the potential to describe a

system with some work performed over the boundary and

with a heat flux crossing it:

g1 Z f1 Cm0H0M (34)

Differentiation and inserting (31) leads to:

dg1ðT ;H0Þ ZKsdT Cm0MdH0 (35)

The derivatives are:

vg1

vT

� �
H0

ZKs (36a)

vg1

vH0

� �
T

Z m0M (36b)

From Eqs. (27b) and (36b) it follows that:

vh1

vH0

� �
s

Z
vg1

vH0

� �
T

(37)

By analogy to Section 3.1, with Eqs. (36a) and (36b), a

further Maxwell relation is determined:

v

vT

vg1

vH0

� �
T

� �
H0

Z
v

vH0

vg1

vT

� �
H0

� �
T

0
vM

vT

� �
H0

ZK
1

m0

vs

vH0

� �
T

(38)

Numerous further relations may be derived by trans-

forming variables and writing them as functions of other

independent variables. But these can be readily found with

the existing basic relations, given in the previous

subsections.
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4. Susceptibilities

The (derivative) adiabatic susceptibility is defined by:

c
0
s Z

vM

vH0

� �
s

(39)

Now Eq. (27b) is introduced to obtain:

c
0
s Z

1

m0

v2h1

vH0

� �
s

(40)

The (derivative) isothermal magnetic susceptibility is

defined in an analogous manner:

c
0
T Z

vM

vH0

� �
T

(41)

With Eq. (36b) we obtain:

c0
T Z

1

m0

v2g1

vH0

� �
T

(42)

Only in the case where the magnetization M is

proportional to the field H0, and the demagnetization factor

N (Appendix B, Eq. (B.2)) vanishes does it follow that:

c0
a Z

vM

vH0

� �
a

Z const; a2fs; Tg (S-43)

and

B Z m0ðH CMÞ Z m0 H0 C
vM

vH0

� �
a

H0

� �

Z m0ð1 Cc0
aÞH0; a2fs; Tg (S-44)

With the relative magnetic permeabilities, which are also

constants of proportionality:

ma Z ð1 Cc0
aÞ; a2fs; Tg (S-45)

it follows for adiabatic and isothermal processes that:

B Z mam0H0; a2fs; Tg (S-46)
5. Specific heat capacities

Following Ref. [2], the alteration of the heat in a

magnetic material in terms of differential increments is

written by introducing two specific heat capacities:

dq Z cH0
ðT ;H0ÞdT CcT ðT ;H0ÞdH0 (47)

The quantity cH0
denotes the specific heat at constant

field H0. This is (particularly if H0Z0) the usual specific

heat capacity. In cases treated in this article, it is concluded

that: cH0
ZcV Zcp.

From Eq. (47) it is immediately found that:

cH0
Z

vq

vT

� �
H0

(48)

Substituting (21), we obtain:
cH0
Z T

vs

vT

� �
H0

(49)

Inserting Eq. (36a) leads to:

cH0
ZKT

v2g1

vT2

� �
H0

(50)

This relation is very similar to the susceptibilities

(Eqs. (40) and (42)). A concave Gibbs energy leads also

to a positive value of cH0
and guarantees the stability of the

thermodynamic system. The second condition is also

derived from Eq. (47):

cT Z
vq

vH0

� �
T

(51)

Again (21) is substituted to obtain:

cT Z T
vs

vH0

� �
T

(52)

Applying Maxwell relation (38), the following result is

derived:

cT ðT ;H0Þ ZKm0T
vM

vT

� �
H0

(53)

This result was presented earlier by Rosensweig [2], but

with an alternative concept for its derivation. Furthermore,

he gives the following result:

1

m0

vcH0

vH0

� �
T

Z T
v2M

vT2

� �
H0

(54)

In our presentation this relation is easily obtained by just

considering the derivative of cH0
in Eq. (49) in the order of

the field H0 at constant temperature:

1

m0

vcH0

vH0

� �
T

Z
1

m0

v

vH0

T
vs

vT

� �
H0

� �
T

Z T
v

vT

1

m0

vs

vH0

� �
T

� �
H0

ZKT
v2M

vT2

� �
H0

(55)

where Eq. (38) was inserted, q.e.d.

Note that these specific heat capacities are volumetric

quantities. In engineering they are usually defined per mass

unit. Division by the density r of the material leads to the

more frequently applied physical properties.
6. Specific entropies and specific heat capacities

The specific entropy s in a magnetocaloric material is a

combination of the specific magnetic entropy s(m), the

specific lattice subsystem entropy s(l) and the specific

entropy of the conduction electrons s(e). If we consider it as a

function of T and H0, it follows [11] that:

sðT ;H0Þ Z sðmÞðT ;H0ÞCsðlÞðT ;H0ÞCsðeÞðT ;H0Þ (56)
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In previous sections we did not focus on each of the

entropy contributions and only worked with the total

specific entropy s. Separation of the specific entropy into

three components is correct for some rare-earth materials,

e.g. gadolinium (Gd). But for other substances—e.g. those

which show a 3d transition, such as materials based on

manganese (Mn)—such a superposition is not accurate.

According to Tishin [11] the three entropy contributions

depend on the temperature and the magnetic field and cannot

be clearly separated. For most engineering applications it is

sufficient to work with the total specific entropy. Its

differential is:

dsðT ;H0Þ Z
vs

vT

� �
H0

dT C
vs

vH0

� �
T

dH0 (57)

The total specific heat capacity at constant magnetic field

H0 (Eqs. (49) and (56)):

cH0
Z T

v

vT
ðsðmÞ CsðlÞ CsðeÞÞ

� �
H0

Z T
vsðmÞ

vT

� �
H0

CT
vsðlÞ

vT

� �
H0

CT
vsðeÞ

vT

� �
H0

Z cðmÞ
H0

CcðlÞH0
CcðeÞH0

(58)

can be also separated into three different specific heats.
7. Some useful relations for the study of cycles

Materials scientists frequently measure and publish

specific heat capacities. By application of Eq. (49), the

entropy densities at constant magnetic field are derived from

these quantities:

vs

vT

� �
H0

Z
cH0

T
0sðT ;H0Þ Z s0 C

ðT

0

cH0

s
ds (59)

where s0 denotes the specific entropy at the absolute zero

point of the temperature (TZ0 K), which is by definition

equal to zero.

In gas thermodynamics the specific heat capacity is

defined as the temperature derivative of the specific

enthalpy at constant pressure. The analogy for magnetic

refrigeration is a derivative of the total specific enthalpy at

constant magnetic field H0 (compare to Eq. (27a)):

dh1 Z Tds (60)

The specific enthalpy at constant magnetic field is

calculated by:

h1 Z hð0Þ1 C

ðT

0

vh1

vT

� �
H0

dT (61)

The temperature derivative of the specific enthalpy is:
vh1

vT

� �
H0

Z T
vs

vT

� �
H0

Z cH0
(62)

where (49) and (60) were introduced. Now it is straight-

forward to obtain from (61) with (62):

h1 Z hð0Þ1 C

ðT

0
cH0

ðsÞds (63)

The enthalpy hð0Þ1 is usually set equal to zero. The

distributions of the specific heat capacities of magneto-

caloric alloys are usually not Dirac distributions; they

show a finite width. These kinds of continuous phase

transitions are very well represented by enthalpy methods. A

macroscopic model for continuous phase transitions—based

on an enthalpy concept—was published in 1994 by Egolf

and Manz [31].

By applying Eq. (62) the specific entropy is determined

from the specific heat in a constant magnetic field:

s Z s0 C

ðT

0

vs

vs

� �
H0

ds Z s0 C

ðT

0

cH0

s
ds (64)

where the specific entropy s0 at the zero point is also set

equal to zero.
8. Isothermal magnetization and demagnetization

There are a large number of possible magnetic

refrigeration cycles. The three basic cycles, the Brayton,

Ericsson, and Carnot cycles are described in the succeeding

chapters. Some preparatory work on partial processes of

cycles is presented in the present section and the next

section.

In the Ericsson cycle—and partly in the Carnot cycle—

magnetization and demagnetization are isothermal pro-

cesses. The temperature does not change during the

alteration of the volumetric magnetic flux. Substituting the

derivative of the specific entropy for TZconst (Eq. (57))

into Eq. (26) leads to:

dh1ðs;H0Þ Z T
vs

vH0

� �
T

dH0 Cm0MdH0 (65)

By applying Eqs. (38) and (53) this equation is rewritten:

dh1ðs;H0Þ Z m0 KT
vM

vT

� �
H0

CM

� �
dH0

Z ðcT Cm0MÞdH0 (66)

The alteration of the specific entropy during an

isothermal alteration of the volumetric magnetic flux is

calculated by applying Eqs. (38) and (53):
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Ds Z sð2ÞKsð1Þ Z

ðsð2Þ

sð1Þ
dsðTÞ Z

ðH
ð2Þ
0

Hð1Þ
0

vs

vH0

� �
T

dH0

ZK

ðHð2Þ
0

H
ð1Þ
0

m0

vM

vT

� �
H0

dH0 Z

ðHð2Þ
0

H
ð1Þ
0

cT

T
dH0 (67)

where s(1) is the specific entropy at the field Hð1Þ
0 and s(2) at

Hð2Þ
0 . Eq. (67) was derived with the assumption that the

lattice and the electronic entropy are not functions of the

magnetic field. The specific magnetic entropy alteration

then corresponds to the alteration of the total specific

entropy.
Fig. 3. Heating of the magnetocaloric material Gd5(Si1.985Ge1.985

Ga0.03) is shown by the curve with a maximum on the left-hand side

(from Ref. [17]). The cooling case, with a negative adiabatic

temperature difference (presented with the opposite sign), has its

maximum on the right. This second case was created with the data

of the heating case.
9. Adiabatic magnetization and demagnetization

For adiabatic magnetization—as occurs in the Brayton

and in the Carnot cycle—the differential of the specific

enthalpy is derived from Eq. (26):

dh1ðs;H0Þ Z m0MdH0 (68)

In an adiabatic process the total specific entropy does not

alter (dsZ0). From Eq. (57) it follows that:

vs

vT

� �
H0

dT ZK
vs

vH0

� �
T

dH0 (69)

By substituting Eqs. (49) and (52) into (69) a further

relation is obtained:

dT ZK
cT

cH0

dH0 (70)

Inserting Eq. (53) into (70) the magnetization is

introduced:

dT

T
Z

m0

cH0

vM

vT

� �
H0

dH0 (71)

According to Pecharsky and Gschneidner [32] the

integration of Eq. (71) is problematic, because the

thermodynamic measurement of cH0
has a much longer

characteristic time than the magnetic measurement of M.

With knowledge of the temperature as a function of the

specific entropy for different isomagnetic fields, it is more

convenient to perform the following integration:

DT Z

ðT ð2Þ

T ð1Þ
dT Z T ð2Þðs;Hð2Þ

0 ÞKT ð1Þðs;Hð1Þ
0 Þ (72)

where T ð2Þðs;Hð2Þ
0 Þ is the temperature of the magnetocaloric

material at the higher magnetic field Hð2Þ
0 and T ð1Þðs;Hð1Þ

0 Þ at

the lower field intensity, both evaluated at the same specific

entropy. Eq. (71) shows that the temperature will increase in

the case where the magnetocaloric material is moved from a

lower to a higher field and vice-versa. Note that there are

antiferromagnetic materials which exhibit an inverse

magnetocaloric effect [11]. As noted by Gschneidner and

Pecharsky [32], application of Eq. (71) may lead to small
errors, because the specific entropy at the zero point is

neglected. A comprehensive description of this effect and

other errors which occur can be found in [32]. It should be

noted that in most articles only the temperature increase DT

of the heating case is presented, because the cooling case

may be derived from these data. In Fig. 3 the absolute values

of the positive and the negative temperature difference

jDTadj of an adiabatic magnetization and demagnetization

process are presented. The data were taken from Ref. [17].

For example, if the temperature occurring without a

magnetic field (H0Z0) is T(1)Z286 K, then the adiabatic

temperature increase due to the adjustment of a magnetic

field Hð2Þ
0 Z7:958!105 A=m (this corresponds to

m0Hð2Þ
0 Z5T) will lead to a temperature of approximately

T(2)Z301 K. On the other hand, if the magnetocaloric

material is initially in a magnetic field of strength

Hð2Þ
0 Z7:958!105 A=m, at T(2)Z301 K, the alteration of

Hð2Þ
0 to Hð1Þ

0 Z0 cools the sample to T(1)Z286 K.
10. Cyclic processes

To build new continuously operating magnetic refriger-

ators and heat pumps, it is favourable to begin with the study

of the work, the heat fluxes and coefficients of performance

of cyclic processes. For any kind of magnetic refrigeration

cycles, the cyclic integral of the equivalent of Eq. (1) for

specific properties leads to:

#du1 Z#dq C#dw1 Z 0 (73)

where w1 without a further superscript always refers to the

external work. The reason for the validity of Eq. (73) is that

the internal energy is a state function and that after a cycle it



Fig. 4. The Brayton cycle follows two isomagnetic field lines (H0Z
const) and two adiabatic curves (sZconst).
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reaches the same point and, therefore, must show the same

value again. It then follows that:

#dw1 ZK#dq (74)

In the following treatments only the work contributions

for the magnetization of the magnetocaloric material are

investigated. Other contributions—e.g. the work performed

to accelerate a rotating wheel, etc.—are not referred to,

because in most systems these contributions are negligible

or do not occur. Then, by applying Eq. (22), the cyclic work

is given by:

#dw1 ZKm0#H0dM (75)

In a cyclic process the following total differential also

vanishes:

#dðM;H0Þ Z#MdH0 C#H0dM Z 0 (76)

Eq. (75) is therefore rewritten:

#dw1 Z m0#MdH0 0#dwðextÞ
1 Z#dwðtechÞ

1 (77)

Eq. (77) follows by comparing (75) with (77) and

remembering Eqs. (17) and (18). For a reversible process the

cyclic work can be also represented by the temperature and

specific entropy by substituting (21) into (74):

#dw1 ZK#Tds (78)
11. The Brayton cycle

Fig. 4 shows the Brayton cycle, which is one of the most

basic cycles of magnetic refrigeration. A machine based on

this cycle operates between two isofields (constant magnetic

fields H0) and two isentropic curves (constant total specific

entropy s). When a magnetocaloric material is moved into a

magnetic field (process 1–2), the total entropy remains

constant. But due to the adiabatic magnetization

ðDH0 ZHð2Þ
0 KHð1Þ

0 Þ, the temperature in the magnetocaloric

material increases. At this higher temperature heat is

rejected from the material (2–3). In the adiabatic demagnet-

ization process (3–4) the magnetocaloric material cools

down. In the last stage (4–1) heat can be absorbed from a

heat source, leading to the cooling of an external device. The

cyclic work of the Brayton cycle is described by applying

Eq. (77):

w1 Z#dw1 Z m0#MdH0

Z m0

ð2

1
MdH0 Cm0

ð4

3
MdH0 (79)

Eq. (79) follows, because the analogous integrals of the
two isofield processes (2–3) and (4–1) vanish. Note that the

integral boundaries are actually defined by their physical

states, e.g. Hð1Þ
0 and Hð2Þ

0 , and not simply by the

corresponding integer numbers 1 and 2, which here have

been introduced as abbreviations.

The adiabatic magnetization or demagnetization process

has been examined in Section 9. In the adiabatic case (dsZ
0) it follows from Eq. (68) that:Ð

dh1 Z m0

Ð
MdH0 (S-80)

Comparing this equation with Eq. (77), it is concluded

that the work is equal to the enthalpy difference:Ð
dw1 Z

Ð
dh1 (S-81)

An alteration of the magnetic field only occurs in the

processes (1–2) and (3–4). By applying Eqs. (69) and (79) it

follows:

w1 Z

ð2

1
dh1 C

ð4

3
dh1 Z ½hð2Þ1 Khð1Þ1 �C ½hð4Þ1 Khð3Þ1 � (82)

In another approach, following Eq. (78), we obtain:

w1 ZK

ð3

2
Tds K

ð1

4
Tds (83)

because now the other pair of integrals, namely those of the

processes (1–2) and (3–4), are zero. The processes (2–3) and

(4–1) are isomagnetic field processes (dH0Z0). The

derivative of the specific entropy (Eq. (57)) is:

ds Z
vs

vT

� �
H0

dT (84)

Substituting (49) and (84) into (83) results in:
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w1 ZK

ð3

2
cH0

dT K

ð1

4
cH0

dT (85)

Eq. (62) shows that the cyclic work may be also

described by the specific enthalpy:

w1 ZK

ð3

2

vh1

vT

� �
H0

dT K

ð1

4

vh1

vT

� �
H0

dT (86)

Because the enthalpy difference in an isomagnetic field

is only temperature-dependent, it follows that:

w1 Z ½hð2Þ1 Khð3Þ1 �K ½hð1Þ1 Khð4Þ
1 �

Z ½hð2Þ1 Khð1Þ1 �C ½hð4Þ1 Khð3Þ
1 � (87)

in agreement with (82). An important criterion to evaluate

technical systems is the coefficient of performance (COP),

which in a refrigeration application represents the ratio of

the cooling energy qc to the work w1 which has to be

performed:

COP Z
qc

w1

(88)

Applying this to the Brayton cycle, it follows that:

qc Z

ð1

4
Tds (89a)

qr Z

ð3

2
Tds (89b)

w1 ZKqr Kqc (89c)

where (89c) is a consequence of Eqs. (83), (89a) and (89b).

Here qr describes the heat rejected from the system (qr!0).

Applying partial results of Eqs. (83)–(87), the following

final result is obtained:

COPBrayton Z
½hð1Þ1 Khð4Þ1 �

½hð2Þ1 Khð1Þ1 �C ½hð4Þ1 Khð3Þ1 �
(90)
Fig. 5. The Ericsson cycle may operate with heat regeneration. In an

ideal case no heat losses occur.
12. The Ericsson cycle

A machine based on the Ericsson cycle operates along

two isotherms and two isomagnetic field lines. This process

requires heat regeneration. During the isomagnetic field

process (1–2) heat is absorbed by regeneration from the

opposite side (3–4). Therefore, in ideal regeneration—the

area (2–1–b–d), representing thermal energy absorption

from the magnetocaloric material has to correspond to

(3–4–a–c), representing the heat extraction of the refrigerant

material. The regeneration can only be driven by a

temperature difference. The heat transfer represents an

irreversible process and, therefore, decreases the efficiency

of the Ericsson machine. A simultaneous alteration of the

magnetic field and heat absorption, or rejection, leads to the

isothermal processes (2–3) and (4–1). The area (1–2–3–4)
represents the work required for the Ericsson cycle and the

area (1–4–a–b) is identical to the cooling energy.

In Fig. 5 an ideal Ericsson magnetic refrigeration cycle is

presented. Its cyclic work is derived by applying Eq. (77):

#dw1 Z m0

ð3

2
MdH0 Cm0

ð1

4
MdH0 (91)

Two integrals, namely those related to the isomagnetic

field processes (1–2) and (3–4), again vanish. Since the

integrals presented in Eq. (91) refer to isotherms, it is

concluded that:

w1 Z m0

ð4

1
½MðH0; T

ð2ÞÞKMðH0; T
ð1ÞÞ�dH0 (92)

Substituting the integrands in Eq. (91) by Eq. (27b) the

work is also:

w1 Z

ð3

2

vh1

vH0

� �
s

dH0 C

ð1

4

vh1

vH0

� �
s

dH0

Z ½hð3Þ1 Khð2Þ
1 �K ½hð4Þ1 Khð1Þ1 �KT ð2Þ½sð3Þ Ksð2Þ�

KT ð1Þ½sð1Þ Ksð4Þ� (93)

An alternative approach to calculating the cyclic work of

the Ericsson cycle involves application of the cyclic integral

of heat, Eq. (78), and by substituting Eq. (57):

w1 ZK

ð2

1
T

vs

vT

� �
H0

dT K

ð3

2
T

vs

vH0

� �
T

dH0

K

ð4

3
T

vs

vT

� �
H0

dT K

ð1

4
T

vs

vH0

� �
T

dH0 (94)

Furthermore, it follows with Eqs. (49) and (52) that:
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processes (1, 2) and (4, 3) are parallel. This also leads to a limit of

COPBrayton equal to COPCarnot, which in this case may even be finite.
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w1 ZK

ð2

1
cH0

dT K

ð3

2
cT dH0 K

ð4

3
cH0

dT

K

ð1

4
cT dH0

ZK

ð2

1
dh1 K

ð4

3
dh1 K

ð3

2
cT dH0 K

ð1

4
cT dH0 (95)

Inserting cT given by Eq. (66), we obtain:

w1 ZK

ð2

1
dh1 K

ð4

3
dh1 K

ð3

2
dh1 Cm0

ð3

2
MdH0

K

ð1

4
dh1 Cm0

ð1

4
MdH0 (96)

The four integrals with specific enthalpy differentials add

up to the cyclic integral of the specific enthalpy and are

therefore disregarded:

w1 ZKm0

ð4

1
MdH0 Cm0

ð3

2
MdH0 (97)

which is identical to Eq. (91). The specific cooling energy is

calculated by substituting Eqs. (52) and (53) into (89a):

qc Z T ð1Þ

ð1

4

vs

vH0

� �
T

dH0 Z

ð1

4
cT dH0

ZKm0T ð1Þ

ð1

4

vM

vT

� �
H0

dH0 (98)

Because the temperature in isothermal magnetization

and demagnetization is constant, and therefore not a

function of the specific entropy, the specific cooling energy

is calculated by:

qc Z T ð1Þ½sð1Þ Ksð4Þ�

Z T ð1Þ½sðT ð1Þ;Hð1Þ
0 ÞKsðT ð4Þ;Hð4Þ

0 Þ�; T ð4Þ Z T ð1Þ (99)

In an analogous manner the rejected specific heat of the

system is determined (Eq. (89b)):

qr Z T ð2Þ

ð3

2

vs

vH0

� �
T

dH0 Z

ð3

2
cT dH0

ZKm0T ð2Þ

ð3

2

vM

vT

� �
H0

dH0 (100)

and

qr Z T ð2Þ½sð3Þ Ksð2Þ�

Z T ð2Þ½sðT ð3Þ;Hð3Þ
0 ÞKsðT ð2Þ;Hð2Þ

0 Þ�; T ð3Þ Z T ð2Þ (101)

From Eqs. (52) and (94) we derive:

w1 Z ½hð1Þ1 Khð4Þ1 �KT ð1Þ½sð1Þ Ksð4Þ�C ½hð3Þ1 Khð2Þ1 �

KT ð2Þ½sð3Þ Ksð2Þ� (102)

The COP of the Ericsson cycle is obtained by
substituting (99) and (102) into (88):

COPEricsson Z
qc

w1

Z
T ð1Þ½sð1Þ Ksð4Þ�

½hð1Þ1 Khð4Þ1 �KT ð1Þ½sð1Þ K sð4Þ�C ½hð3Þ1 Khð2Þ
1 �KT ð2Þ½sð3Þ Ksð2Þ�

(103)

An alternative formula, containing the magnetization, is

developed by substituting Eqs. (92) and (98) into (88):

COPEricsson

Z
T ð1Þ

Ð 1
4

vM
vT

	 

H0

dH0

j
Ð 4

1 ½MðH0; T ð1ÞÞKMðH0; T
ð2ÞÞ�dH0j

(104)

In the case that processes (1–2) and (3–4) refer to ideal

regeneration, it follows with Eq. (49) that:ð2

1
T

vs

vT

� �
H0

dT

ZK

ð4

3
T

vs

vT

� �
H0

dT 0

ð2

1
cH0

dT

ZK

ð4

3
cH0

dT (S-105)

By introducing the specific enthalpies, we obtain:

hð2Þ1 Khð1Þ1 Z hð3Þ1 Khð4Þ1 (S-106)

With this result Eq. (103) is simplified:

COPEricsson Z
qc

w1

Z
T ð1Þ½sð1Þ Ksð4Þ�

KT ð1Þ½sð1Þ Ksð4Þ�KT ð2Þ½sð3Þ Ksð2Þ�
(S-107)

Studying the following limit:

lim
T ð2Þ/T ð1Þ

COPEricsson Z
T ð1Þ

T ð2Þ KT ð1Þ
Z COPCarnot (S-108)

because s(2) approaches s(1) and s(3) tends toward s(4), so that

the brackets in (S-107) cancel out. Within this limit the work

performed vanishes and the COP becomes infinitely large.

The Carnot system will be discussed in more detail in the

next section.3
13. The Carnot cycle

In the Carnot cycle an adiabatic magnetization occurs in

process (1–2) (Fig. 6). It continues with a further

magnetization in stage (2–3), which is now an isothermal



Fig. 6. The Carnot cycle operates with mixed processes of alteration

of the magnetization in an altering field and heat absorption or

rejection.
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magnetization. During this process generated heat is

extracted from the system. The next process step, namely

(3–4), is an adiabatic demagnetization process. Connecting

the system with a heat source leads to an isothermal

demagnetization, resulting in process (4–1). It becomes

clear that the Carnot cycle can only be run, if a minimum of

four different magnetic fields occur, through which the

magnetocaloric material is moved. In the vertical process 1–

2 the alteration of the magnetic field has to apply quickly,

not allowing heat to diffuse away or be transported out by

convection. In (2–3) the isothermal magnetization requires

an alteration of the magnetic field and simultaneous

rejection of heat. This process will therefore be slower.

The area between (1–2–3–4) represents the work required

and the area (1–4–a–b) is related to the thermal cooling

energy.

In Fig. 6 a Carnot cycle is presented. The cyclic work is

calculated by:

w1 Z m0

ð2

1
MdH0 Cm0

ð3

2
MdH0 Cm0

ð4

3
MdH0

Cm0

ð1

4
MdH0 (109)

With Eq. (27b) (107) is transformed to:

w1 Z

ð2

1

vh1

vH0

� �
s

dH0 C

ð3

2

vh1

vH0

� �
s

dH0

C

ð4

3

vh1

vH0

� �
s

dH0 C

ð1

4

vh1

vH0

� �
s

dH0 (110)

Because the derivative of specific enthalpy in an

adiabatic magnetization or demagnetization process is not

dependent on the specific entropy, we obtain:
w1 Z

ð2

1
dh1 C

ð3

2

vh1

vH0

� �
s

dH0 C

ð4

3
dh1

C

ð1

4

vh1

vH0

� �
s

dH0 (111)

Now the second and the fourth terms are replaced, using

the total differential of the specific enthalpy (Eq. (26)).

Because the cyclic integral of the specific enthalpy vanishes,

Eq. (111) simplifies to:

w1 ZK

ð3

2

vh1

vs

� �
H0

ds K

ð1

4

vh1

vs

� �
H0

ds (112)

Because the partial derivatives in Eq. (112) are identical

to the temperature T (Eq. (27a)), and the temperature in an

isothermal process is not dependent on the specific entropy,

it follows that:

aw1 ZK

ð3

2
Tds K

ð1

4
Tds

Z ½T ð2Þ KT ð1Þ�½sð1Þ Ksð4Þ�; sð1Þ Ksð4Þ

Z sð2Þ Ksð3Þ (113)

Now the cyclic work is developed with the circle integral

of the specific heat (compare with Eq. (74)). Additionally,

Eq. (52) is substituted:

w1 ZK

ð3

2
T

vs

vH0

� �
T

dH0 K

ð1

4
T

vs

vH0

� �
T

dH0

ZK

ð3

2
cT dH0 K

ð1

4
cT dH0 (114)

Eq. (114) is rewritten:

w1 Z

ð4

1
½cT ðH0; T

ð1ÞÞKcT ðH0; T
ð2ÞÞ�dH0 (115)

Combining Eq. (114) with (52) leads to:

w1 Z T ð1Þ

ð4

1
ds KT ð2Þ

ð3

2
ds

Z ½T ð2Þ KT ð1Þ�½sð1Þ Ksð4Þ� (116)

Eq. (116) is identical to Eq. (113). The specific cooling

energy is (compare with Eq. (52)):

qc Z

ð1

4
T

vs

vH0

� �
T

dH0 Z

ð1

4
cT dH0 (117)

By analogy to the Ericsson cycle (Eqs. (98) and (99)), the

following relation is obtained:

qc Z T1½sð1Þ Ksð4Þ� (118)

The COP of the Carnot cycle is therefore obtained by

inserting Eqs. (116) and (118) into (88):



Fig. 8. Overlaps in a cascade system lead to dissipation of energy
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COPCarnot Z
qc

w1

Z
T ð1Þ

T ð2Þ KT ð1Þ
(119)

All the cycles previously discussed are ideal cycles. At

present the existing magnetocaloric materials do not show

sufficiently wide temperature differences for some fre-

quently occurring refrigeration and heat pump applications.

For example, a heat pump for a new building with floor

heating does not require as great a temperature rise as one

designed for a conventional heating system in a renovated

building. If the temperature difference between the heat

source and the heat sink at present is more than twenty

degrees, a one-stage machine is not able to fulfil the task. A

solution to this problem is to build magnetic refrigerators

and heat pumps, which take advantage of cascades.

However, both—the regeneration and the cascade

systems—show additional irreversibilities in their cycles.

These lead to lower coefficients of performance.

and decrease the COP.
14. Cascade systems

Cascade systems are well known from conventional

refrigeration technology. A cascade system is a serial

connection of some refrigeration apparatuses. They may be

packed into one housing to give the impression of having only

a single unit. Each of these apparatuses has a different working

domain and temperature range of operation. This can be seen

in Fig. 7(a) by the decreasing temperature domains of stages I–

III. In this figure the cooling energy of stage I (surface: ef14) is

applied for the heat rejection of stage II (surface cd23).

Analogously, the cooling energy of stage II (surface cd14) is

responsible for the heat rejection in stage III. The cooling

energy of the entire cascade system is represented by the

surface ab14 of the last stage (white domain). The total work

performed in the total cascade system is given by the sum of

the areas 1234 of all present stages I, II, and III.

The magnetocaloric effect is maximal at the Curie

temperature. It is large only in the temperature interval

around this temperature, with decreasing effect in the case of

greater (temperature) differences. It is therefore,
Fig. 7. Two cascade systems based on the Brayton cycle. In case (a) all sta

material, whereas in case (b) they are produced with the same material.
advantageous that the operating point of the refrigeration

plant and this temperature interval of optimal magneto-

caloric effect coincide. If the temperature span of the

refrigeration process is too wide, a decrease in efficiency

occurs. A solution to this problem is to work with a cascade

system, where each internal unit has its own optimally

adapted working temperature. Each stage of a cascade

system contains a different magnetocaloric material

(Fig. 7(a)) or it contains the same (Fig. 7(b)).

The disadvantage of a cascade system is that the cycles

of each stage must be designed to avoid overlaps (Fig. 8).

An overlap leads to a narrower temperature span and

reduced efficiency.

A major advantage of a magnetic refrigeration cascade

system over a conventional one is that in the magnetic

refrigeration machine no heat exchangers are required

between the cooling process of the higher stage and the

heat rejection process of the lower stage. This is due to the

fact that the magnetocaloric material is solid and a single

fluid may be transferred to both stages.
ges (I, II and III) are designed to have a different optimally adapted
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15. Systems with regeneration

There are three different types of regenerators: the

external, internal and active types. Further information on

these regenerators is given for example in the review paper

by Yu [10] or the book by Tishin [11]. In this presentation

only active magnetic regenerators are considered, where the

magnetocaloric material itself acts as a regenerator.

Fig. 9 shows a multi-stage regeneration process. Here the

heat rejection from the system is represented by surface:

cd22 0. Magnetocaloric material is therefore cooled in a

(constant) magnetic field from 2 to 2 0. From 2 0 to 2 00 the

same magnetocaloric material continues its path in the

magnetic field. At the same time the ‘regeneration’ fluid—

which was cooled down in process 11 0—passes through it

(the first regeneration). Then the magnetocaloric material

continues to move through the magnetic field in a further

stage, namely 2 003, where another ‘regeneration’ fluid from

stage 1 01 00 passes through it. After reaching point 3 the

specimen is moved out of the magnetic field (or a region of

lower magnetic field intensity). Simultaneously an adiabatic

cooling effect occurs. Finally surface ab1 004 represents the

cooling ‘capacity’ of this regeneration process. After that

the magnetocaloric material is heated and occurs at point 1 00.

Because between 1 0010 and 2 003 there is a regeneration due to

the fluid circulating through the magnetocaloric material,

this material warms up and arrives at point 1 0. The same

regenerative process occurs between 1 01 and 2 002 0, so finally

the magnetocaloric material reaches point 1 again. After that

it is adiabatically magnetized, and so the temperature

increases to point 2. The work, which is performed in this

system, is represented by the surface 1234.

As has probably become apparent, in the regeneration

systems there is no overlapping of the ‘cycles’, as is usually

the case in a cascade system. On the other hand, it is difficult

to perform a multi-stage regeneration system with different

magnetocaloric materials, because each of them has to pass

through all the cycles of the entire system. The multi-

regeneration process cannot be as flexible as a cascade
Fig. 9. A system with regeneration based on the Brayton cycle.
process, because in the latter each stage may be adjusted

with another ‘mass flow’ of solid refrigerant. Attempts are

currently being made to find hybrid materials or multi-layer

materials to improve regeneration systems [11].
16. Conclusions and outlook

The magnetic refrigeration and heat pump technology at

room temperature is still in an early stage of development.

Materials scientists have produced promising new materials

with ‘giant’ magnetocaloric effects, leading to refrigeration

‘capacities’, which are promising even for targeting real-

scale applications in buildings, industry, automobiles, etc.

Because the temperature spans of these materials are not so

wide, it is advantageous to design new prototypes with

cascades. Regeneration is also very favourable. Rotary-

wheel-type magnetic refrigerators with porous magneto-

caloric cylinders lead to a very simple system configuration.

Furthermore, slurries—containing magnetocaloric particles,

just above the nanoscale, which avoid the occurrence of

sedimentation—open up a wide field for new system

developments. The present article aims to yield a basis for

sophisticated (numerical) magnetic refrigerator and heat

pump system calculations.

Following ideas of Tesla and Edison the magneto caloric

effect can also be applied for power generation. The use of

low-level-temperature heat sources makes this method highly

attractive. This method may even become competitive with

photovoltaics. The authors propose a reinvestigation of these

methods with recently developed materials.
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Appendix A. Auxiliary derivation to the introduction of

the internal energy

By regrouping Eq. (15) the next equation is obtained:

dW1 ZK

ð
U

ð ðH K ðH 0Þd ðBdV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

Km0

ð
U

ðH 0dð ðH K ðH0ÞdV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

K

ð
U

ðH 0dð ðB Km0
ðH ÞdV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C

(A.1)
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At first it is shown that term A vanishes. In

electromagnetism it is well known that the divergence-free

magnetic induction ðB possesses a vector potential ðA:

ðB Z rot ðA0d ðB Z rotd ðA (A.2)

After substituting (A.2) into term A of (A.1) with the

vector identity:

divðða ! ðbÞ Z ÐbrotÐa K ðarotðb (A.3)

it follows that:ð
U

ð ðH K ðH 0Þd ðBdV ZK

ð
U

div½ð ðH K ðH 0Þ!d ðA�dV

C

ð
U

rotð ðH K ðH0Þd ðAdV (A.4)

With the divergence theorem the first integral on the

right-hand side of Eq. (A.4) can be transformed to the

surface integral:ð
U

ð ðH K ðH 0Þd ðBdV ZK

ð
vU

½ð ðH K ðH0Þ!d ðA�dðS

C

ð
U

rotð ðH K ðH0Þd ðAdV ; dðS Z ðndS ðA:5Þ

with the normal vector ðn of the surrounding surface domain

vU. This surface can be transformed to infinity and then the

first integral in (A.5) vanishes:ð
U

ð ðH K ðH 0Þd ðBdV Z

ð
U

rotð ðH K ðH 0Þd ðAdV (A.6)

From Maxwell Eq. (3c) it follows that:

rot ðH K rot ðH 0 Z rotð ðH K ðH0Þ Z ðj Kðj0 Z 0 (A.7)

because both fields ðH and ðH 0 are created by the same

currents ðjZðj0, which do not depend on the existence and

distribution of magnetic material in the considered domain

(see also Ref. [26]). Therefore, both integrals in (A.4) vanish

and the total term A in (A.1) is zero, q.e.d.

The second term B in (A.1) is:

m0

ð
U

ðH0dð ðH K ðH0ÞdV Z

ð
U

ðB0dð ðH K ðH0ÞdV (A.8)

From Eq. (A.2) it is concluded that:

ðB0 Z rot ðA0 (A.9)

This equation is substituted into (A.8) and, furthermore,

(A.3) is applied:
ð
U

rot ðA0dð ðH K ðH 0ÞdV Z

ð
U

div½ ðA0 !dð ðH K ðH 0Þ�dV

C

ð
U

ðA0rot½dð ðH K ðH 0Þ�dV Z 0

(A.10)

The arguments are the same as before. The first integral on

the right-hand side is transformed by the divergence theorem

to a surface integral, which at an infinite distance vanishes. The

second integral is also zero, because of Eq. (A.7), q.e.d.

Now only term C is left:

dW1 ZK

ð
U

ðH 0dð ðB Km0
ðH ÞdV

ZK

ð
U

ðB0d
1

m0

ðB K ðH

� �
dV (A.11)

The term in the integral is just the specific external work

presented by Eq. (16).
Appendix B. Derivation of the magnetic internal energy

by applying the alternative Kelvin force (Liu force)

The following Kelvin force has to date been believed to

apply in a very general manner:

ðF
ð1Þ
K Z m0

ð
G

MiVHidV ; N/1; c/1 (B.1)

where Einstein’s summation rule has to be applied to

identical indices. An alternative representation is also valid

(Appendix C). In this appendix, after each formula of a

force, its correct application domain is given. From the

derivation in this section, it will become clear that this force

is related to the technical work of an open system in the case

that HZH0 (compare with Eq. (18)). This is identical to the

relation (Fig. 1):

N Z
Hdem

M
/1; ðH int Z ðH 0 C ðHdem 0H Z H0 Z Hint

(B.2)

Odenbach and Liu [28] performed precise measurements

on a ferromagnetic fluid sample, which was prepared as a

pendulum in a magnetic field with a spatial derivative and

showed that the alternative Kelvin force:

ðF
ð2Þ
K Z

ð
G

MiVBidV ; N/1; c2R
C (B.3)

is more accurate for high susceptibilities. The two forces are

only identical for small susceptibilities. The experiments

were performed for HZH0. Thus small adaptations are

proposed:
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ðF
ð3Þ
K ZK

ð
G

MiVBiðH0;MÞdV ; N 2R
C; c2R

C (B.4)

The introduction of the zero field in this equation is

consistent with the knowledge that the internal magnetic

field is a reaction field and on the basis of momentum

considerations cannot contribute to the force [26]. Applying

Eq. (6) it follows that:

ðF
ð3Þ
K ZK

1

m0

ð
G

BiVBidV Cm0

ð
G

H0iVH0idV

Cm0

ð
G

H0iVMidV (B.5)

First it is shown that the first two integrals cancel out:

1

m0

ð
G

BiVBidV Km0

ð
G

H0iVH0idV

Z
1

2m0

ð
G

VB2
i dV K

m0

2

ð
G

VH2
0idV (B.6)

Now Eq. (B.6) is multiplied from the left with 2m0 times

a constant vector ðC :ð
G

ðC$ðVB2
i Km2

0VH2
0iÞdV Z

ð
G

ðC$VJdV (B.7a)

J Z ðB2
i Km2

0H2
0iÞ (B.7b)

The following identity of vector analysis is applied:

divð ðC$JÞ Z div ðC$J C ðC$VJ Z ðC$VJ (B.8)

Eq. (B.8) can be reduced because the divergence of a

constant vector is zero. Now, with Eqs. (B.7a) and (B.8) it is

concluded that:ð
G

ðC$VJdV Z

ð
G

divð ðC$JÞdV (B.9)

Now the divergence theorem is applied to obtain:ð
G

divð ðC$JÞdV Z

ð
vG

J ðC$ðn$dS Z

ð
vG

J ðCdðS (B.10)

where surface integrals are taken over the border of the

specimen vG with the normal vector ðn. On this border

surface the following conditions hold:

Bi Z m0H0i i2f1; 2; 3g0J Z 0 (B.11)

Therefore, (B.4) reduces to:

ðF
ð3Þ
K Z m0

ð
G

H0iVMidV (B.12)

The work performed on a specimen relates to the

reaction force of this magnetic force:
ðF ZKðF
ð3Þ
K ZKm0

ð
G

H0iVMidV (B.13)

Because the pendulum experiment is isothermal, dqZ0,

and this force relates to the potential:

ðF Z VU1 (B.14)

Then it follows that:

dU1 Z ðF$dðs ZKm0

ð
G

H0iVMidVdðs

ZKm0

ð
G

H0iVMidðsdV (B.15)

and

du1 ZKm0H0iVMidðs (B.16)

For a clear demonstration of this relation the following

treatment is performed by writing all the components. The

spatial vector increment is also given in components:

dðs Z

dx1

dx2

dx3

0
B@

1
CA (B.17)

Then Eq. (B.16) transforms to:

du1 ZKm0

H01

vM1

vx1

CH02

vM2

vx1

CH03

vM3

vx1

H01

vM1

vx2

CH02

vM2

vx2

CH03

vM3

vx2

H01

vM1

vx3

CH02

vM2

vx3

CH03

vM3

vx3

0
BBBBBB@

1
CCCCCCA

dx1

dx2

dx3

0
B@

1
CA

(B.18)

The vector multiplication leads to:

du1 ZKm0 H01

vM1

vx1

dx1 CH02

vM2

vx1

dx1 CH03

vM3

vx1

dx1

�

CH01

vM1

vx2

dx2 CH02

vM2

vx2

dx2 CH03

vM3

vx2

dx2

CH01

vM1

vx3

dx3 CH02

vM2

vx3

dx3 CH03

vM3

vx3

dx3

�
(B.19)

By regrouping the terms we obtain:

du1 ZKm0 H01

vM1

vx1

dx1 CH01

vM1

vx2

dx2 CH01

vM1

vx3

dx3

�

CH02

vM2

vx1

dx1 CH02

vM2

vx2

dx2 CH02

vM2

vx3

dx3

CH03

vM3

vx1

dx1 CH03

vM3

vx2

dx2 CH03

vM3

vx3

dx3

�
(B.20)
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Note that the index 1 in du1 has a different meaning than

in the other quantities relating to the coordinate system. For

a steady state motion one obtains:

du1 ZKm0ðH01dM1 CH02dM2 CH03dM3Þ (B.21)

Now the result is:

du1 ZKm0
ðH 0d ðM (B.22)

the internal energy alteration of an adiabatic closed system

(compare with Eq. (23)).
Table A1

Analogy of the driving force and order parameter of a conventional

gas compression system with a magnetic refrigeration or heating

system

Quantity Gas thermo-

dynamics

Magneto-

thermodynamics

Driving and ‘force’

(stress parameter)

Pressure p Field H0

Order parameter

(reaction of system)

Specific

volume v

Magnetization M

(orientation of spins)

External work (closed

system)
dwðextÞ

1 ZKpdv dwðextÞ
1 ZKm0H0dMa

(related to force of

Liu)

Technical work (open

system)
dwðtechÞ

1 Zvdp dwðtechÞ
1 Zm0MdH0

(related to old Kelvin

force)

a This follows by the vector analytical treatment in Appendix B.
Appendix C. Different representations of the Kelvin

force

The Kelvin force density is:

fK Z MiVHi (C.1)

It is very often written in a different manner, namely:

fK Z ð ðM$VÞ ðH (C.2)

In the following it is proven that these two represen-

tations are identical:

fK Z MiVHi

Z

M1

v

vx1

H1 CM2

v

vx1

H2 CM3

v

vx1

H3

M1

v

vx2

H1 CM2

v

vx2

H2 CM3

v

vx2

H3

M1

v

vx3

H1 CM2

v

vx3

H2 CM3

v

vx3

H3

2
6666664

3
7777775 (C.3)

From Maxwell Eq. (3c), because electricity is not

involved and the currents are zero, it follows that:

rot ðH Z

vH3

vx2

K
vH2

vx3
vH1

vx3

K
vH3

vx1
vH2

vx1

K
vH1

vx2

2
6666664

3
7777775Z 0 (C.4)

we conclude that:

vH3

vx2

Z
vH2

vx3

(C.5a)

vH1

vx3

Z
vH3

vx1

(C.5b)

vH2

vx1

Z
vH1

vx2

(C.5c)

Substituting some terms in Eq. (C.3) by these relations

leads to:
fK Z

M1

v

vx1

H1 CM2

v

vx2

H1 CM3

v

vx3

H1

M1

v

vx1

H2 CM2

v

vx2

H2 CM3

v

vx3

H2

M1

v

vx1

H3 CM2

v

vx2

H3 CM3

v

vx3

H3

2
6666664

3
7777775

Z

M1

v

vx1

CM2

v

vx2

CM3

v

vx3

M1

v

vx1

CM2

v

vx2

CM3

v

vx3

M1

v

vx1

CM2

v

vx2

CM3

v

vx3

2
6666664

3
7777775

H1

H2

H3

2
64

3
75

Z ð ðM$VÞ ðH (C.7)

q.e.d.
Appendix D. Analogy
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